Generalization of Boolean Functions Properties to Functions Defined over GF(p)
نویسنده
چکیده
Abstract: Problem statement: Traditionally, cryptographic applications designed on hardware have always tried to take advantage of the simplicity of implementation functions over GF(p), p = 2, to reduce costs and improve performance. On the contrast, functions defined over GF(p); p > 2, possess far better cryptographic properties than GF(2) functions. Approach: We generalize some of the previous results on cryptographic Boolean functions to functions defined over GF(p); p > 2. Results: We generalize Siegenthaler’s construction to functions defined over finite field. We characterize the linear structures of functions over GF(p) in terms of their Walsh transform values. We then investigate the relation between the autocorrelation coefficients of functions over GF(p) and their Walsh spectrum. We also derive an upper bound for the dimension of the linear space of the functions defined over GF(p). Finally, we present a method to construct a bent function from semi-bent functions. Conclusion: Functions defined over GF(p) can achieve better cryptographic bounds than GF(2) functions. In this paper we gave a generalization of several of the GF(2) cryptographic properties to functions defined over GF(p), where p is an odd prime.
منابع مشابه
On Self-Dual Quantum Codes, Graphs, and Boolean Functions
A short introduction to quantum error correction is given, and it is shown that zero-dimensional quantum codes can be represented as self-dual additive codes over GF(4) and also as graphs. We show that graphs representing several such codes with high minimum distance can be described as nested regular graphs having minimum regular vertex degree and containing long cycles. Two graphs correspond ...
متن کاملThe ring of real-valued functions on a frame
In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...
متن کاملNew Generalization of Darbo's Fixed Point Theorem via $alpha$-admissible Simulation Functions with Application
In this paper, at first, we introduce $alpha_{mu}$-admissible, $Z_mu$-contraction and $N_{mu}$-contraction via simulation functions. We prove some new fixed point theorems for defined class of contractions via $alpha$-admissible simulation mappings, as well. Our results can be viewed as extension of the corresponding results in this area. Moreover, some examples and an application to funct...
متن کاملOn meromorphically multivalent functions defined by multiplier transformation
The purpose of this paper is to derive various useful subordination properties and characteristics for certain subclass of multivalent meromorphic functions, which are defined here by the multiplier transformation. Also, we obtained inclusion relationship for this subclass.
متن کاملOn multiple output bent functions
a r t i c l e i n f o a b s t r a c t Keywords: Cryptography Boolean functions Bent functions Multiple output Monomial trace functions In this article we investigate the possibilities of obtaining multiple output bent functions from certain power polynomials over finite fields. So far multiple output bent functions F : GF(2) n → GF(2) m (where n is even and m n/2), for any particular class of B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012